Noise update modeling for speech enhancement: when do we do enough?
نویسندگان
چکیده
In speech enhancement, it is generally assumed that if you can update your noise estimate on a frame-by-frame basis, you should achieve the highest level of enhancement performance. However, for many noise types and environmental conditions, it is not necessary to perform an update on a frame-by-frame basis to achieve superior performance if the noise structure does not change rapidly. For applications where compute/memory resources are limited, better overall speech performance could be achieved if a more reasonable update rate is estimated so that available compute/memory resources could be made available to the enhancement algorithm itself. In this study, we propose a framework to model the noise structure with the goal of determining the best update rate required to achieve a given quality for speech enhancement. Speech systems generally develop specialized solutions for niose which are unique to each application (i.e., recognition, speaker ID, enhancement etc.). Here we propose a model to predict the noise update rate required to achieve a given quality for enhancement. We evaluate the algorithm across a corpus of four noise types under different levels of degradation. The error between the mean observed and the mean predicted Itakuta-Saito (IS) values of quality are typically between 0.06 to 1.78 IS for our model selected noise frame update rate of 1 frame every 5 frames using the Log-MMSE enhancement scheme. Finally we consider mobile and resource limited applications where such a framework would be useful
منابع مشابه
A Novel Frequency Domain Linearly Constrained Minimum Variance Filter for Speech Enhancement
A reliable speech enhancement method is important for speech applications as a pre-processing step to improve their overall performance. In this paper, we propose a novel frequency domain method for single channel speech enhancement. Conventional frequency domain methods usually neglect the correlation between neighboring time-frequency components of the signals. In the proposed method, we take...
متن کاملA New Method for Speech Enhancement Based on Incoherent Model Learning in Wavelet Transform Domain
Quality of speech signal significantly reduces in the presence of environmental noise signals and leads to the imperfect performance of hearing aid devices, automatic speech recognition systems, and mobile phones. In this paper, the single channel speech enhancement of the corrupted signals by the additive noise signals is considered. A dictionary-based algorithm is proposed to train the speech...
متن کاملSpeech Enhancement using Adaptive Data-Based Dictionary Learning
In this paper, a speech enhancement method based on sparse representation of data frames has been presented. Speech enhancement is one of the most applicable areas in different signal processing fields. The objective of a speech enhancement system is improvement of either intelligibility or quality of the speech signals. This process is carried out using the speech signal processing techniques ...
متن کاملSpeech enhancement based on hidden Markov model using sparse code shrinkage
This paper presents a new hidden Markov model-based (HMM-based) speech enhancement framework based on the independent component analysis (ICA). We propose analytical procedures for training clean speech and noise models by the Baum re-estimation algorithm and present a Maximum a posterior (MAP) estimator based on Laplace-Gaussian (for clean speech and noise respectively) combination in the HMM ...
متن کاملA New Shuffled Sub-swarm Particle Swarm Optimization Algorithm for Speech Enhancement
In this paper, we propose a novel algorithm to enhance the noisy speech in the framework of dual-channel speech enhancement. The new method is a hybrid optimization algorithm, which employs the combination of the conventional θ-PSO and the shuffled sub-swarms particle optimization (SSPSO) technique. It is known that the θ-PSO algorithm has better optimization performance than standard PSO al...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006